Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems

نویسنده

  • Sanjay K. Khattri
چکیده

We present an Altered Jacobian Newton Iterative Method for solving nonlinear elliptic problems. Effectiveness of the proposed method is demonstrated through numerical experiments. Comparison of our method with Newton Iterative Method is also presented. Convergence of the Newton Iterative Method is highly sensitive to the initialization or initial guess. Reported numerical work shows the robustness of the Altered Jacobian Newton Iterative Method with respect to initialization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving systems of nonlinear equations using decomposition technique

A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...

متن کامل

A Newton method without evaluation of nonlinear function values

The present author recently proposed and proved a relationship theorem between nonlinear polynomial equations and the corresponding Jacobian matrix. By using this theorem, this paper derives a Newton iterative formula without requiring the evaluation of nonlinear function values in the solution of nonlinear polynomial-only problems.

متن کامل

Jacobian-Free Three-Level Trust Region Method for Nonlinear Least Squares Problems

Nonlinear least squares (NLS) problems arise in many applications. The common solvers require to compute and store the corresponding Jacobian matrix explicitly, which is too expensive for large problems. In this paper, we propose an effective Jacobian free method especially for large NLS problems because of the novel combination of using automatic differentiation for J(x)v and J (x)v along with...

متن کامل

Analysis of a Multilevel Iterative Method for Nonlinear Finite Element Equations

The multilevel iterative technique is a powerful technique for solving systems of equations associated with discretized partial diierential equations. We describe how this techniques can be combined with a globally con-vergent approximate Newton method to solve nonlinear partial diierential equations. We show that asymptotically only one Newton iteration per level is required; thus the complexi...

متن کامل

Inexact Block Quasi - Newton Methods for Sparsesystems of Nonlinear Equations

In this paper we present the results obtained in solving consistent sparse systems of n nonlinear equations F(x) = 0; by a Quasi-Newton method combined with a p block iterative row-projection linear solver of Cimmino-type, 1 p n: Under weak regularity conditions for F; it is proved that this Inexact Quasi-Newton method has a local, linear convergence in the energy norm induced by the preconditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008